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Abstract

Using the hypersingular integral equation method based on body force method, a planar crack meeting the interface
in a three-dimensional dissimilar materials is analyzed. The singularity of the singular stress field around the crack front
terminating at the interface is analyzed by the main-part analytical method of hypersingular integral equations. Then,
the numerical method of the hypersingular integral equation for a rectangular crack subjected to normal load is
proposed by the body force method, which the crack opening dislocation is approximated by the product of basic
density functions and polynomials. Numerical solutions of the stress intensity factors of some examples are given.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent decades, the use of new materials is increasing in a wide range of engineering field and the
accurate evaluation of interface strength in dissimilar materials becomes very important. Considerable
researches have been done to evaluate the stress intensity factors and crack opening displacement for cracks
in dissimilar materials (Cook and Erdogan, 1972; Lee and Keer, 1986; Chen and Nisitani, 1993). However,
most of these works are on two-dimensional cases. Due to the difficult of mathematics, there are no any
analytical methods for three-dimensional crack problems. However several numerical methods are avail-
able, such as the hypersingular integral equation method combined with boundary element method (Qin
et al., 1997; Helsing et al., 2001). Lee and Keer (1986) evaluated the stress intensity factors of a crack
meeting the interface by a body force method, but they did not give the singularity and the singular stress
field near the crack front at the interface. Noda et al. (1999) studied mixed modes stress intensity factors of
an inclined semi-elliptical surface crack by a body force method, in which the unknown body force densities
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were approximated by the products of fundamental density functions and polynomials. This numerical
method was applied by Wang et al. (2001) to investigated the stress intensity factors of a 3D rectangular
crack using body force method.

In the present paper, a hypersingular integral equation method based on the body force method is
applied to solve the problem of a three-dimensional vertical crack meeting at an interface. Based on the
analytical solution of singular stress field near the crack front, and the numerical approach suggested
by Noda et al. (1999) will be improved to obtain highly reliable numerical results of stress intensity fac-
tors.

2. General solutions and the hypersingular integral equation for a planar crack meeting the bimaterial interface

A fixed rectangular Cartesian system x; (i = 1, 2, 3) is used. Consider two dissimilar half-spaces bonded
together along the x;—x3 plane. Suppose that the right half-space (x, plane) is occupied by an elastic medium
with elastic constants (y,v;) and the left half-space (—x, plane) is occupied by an elastic medium with
elastic constants (u,, v,). There is a rectangular crack terminating at the bimaterial interface as shown in
Fig. 1. The crack is assumed to be in a plane normal to the x; axis, and subjected to a normal load. Based on
the body force method (Lee and Keer, 1986), the displacements in the left and right materials can be ex-
pressed as

uf"(x)=/ST,-’;'(x,é>a3<é>ds<é> =123 m=1,2 (1)

where #; = u7 —u3 is the crack opening dislocation, the superscripts 1 and 2 denote the right and left
materials respectively, and
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Fig. 1. Problem configuration.
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and

7’12\/(x1—51)2+(x2—52)2+x§7 7’2:\/(x1—§1)2+(x2+52)2+x§7 ry=r+x+ &,
ra=n-—x+&, A=(1-0)/(1+rl), B=(—xl)/(I+r), S=1-I)/1+T),
I'=w/p, C=Sk +1), x=3—-4y

The corresponding stress field is given as follows:

2 oT, oTL(x oT5(x,¢) | | -
ol (x) = /S {1’_“;;1 kgi" %ﬁull %( ), 36(: )Hm(f)ds(é) jk=1.23 (8)
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Using the boundary condition, the hypersingular integral equation for unknown function #; can be ob-
tained (Lee and Keer, 1986)

Hy 1 -

2o 1) Ts| 2 K == 10
n(x + 1) %s [rf +Kolx, 6)} (&) ds(S) P(x) (10)

where :.F is the symbol of the finite-part integral, and

2501+ 1) =340 — 261 +3) , 34[126:6 — (3 = ) (1~ e + &)’

2r; 2r;
+3(B*2S+2AK1+AK%72SK1) i
21913

in which r| = \/(x1 &V H (-8 = \/(x1 — &)+ (x2 + &), Notice that Eq. (10) is a hypersin-
gular integral equation, and can be numerically solved.

KO (Xv 6) =

3. Singular stresses near the crack front meeting the interface

According to the theory of the hypersingular integral equation, the crack dislocation near a point &; at
the interface can be assumed as

i3(&) = D(&)& 0 <Re(2) <1 (12)

where D(&,) is a non-zero constant related to point &,, 4 is the stress singular index near the crack front
meeting the interface. Using the main-part analytical method (Tang and Qin, 1993) and following relations,

j(& Lr‘—% dé, dé, & —2miD(&)xi ! cot(Am) (13)

/S ’:—%‘ dé, dé = 2mAD (&)t Sin(l o (14)

[ Smdade = - Jaa - vote 05

/S %1@ de, dé = ‘_‘nw(fo) Sm(lm) (16)

/ deydé = 2man(e ) (17
5 72} sin(m)

where S, is a small area on crack surface near point &;, from Eq. (10), the stress singular index can be
determined by

44* +2cos(im) —A—B =0 (18)

This is coincident with the characteristic equation for the two-dimensional case (Cook and Erdogan, 1972;
Chen and Nisitani, 1993). The stress intensity factors along the crack front meeting the interface and the
inner crack front are defined as
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K, = limass(r, 0),_,(2r)" (19)
Ki = lim a53(r, 0,) _V2r (20)

Based on relation (12), the singular stress field around the crack front terminating at the interface can be
obtained by the main-part analytical method. For a point p near the crack front point &, in the right
material, using following relations,

i3 2nD(&y)r* " sin(m — 0) 4

3 = 21
/s,; I déyde, sin(/Ar) sin 6 (1)

us 2nD(&y)r" ! sin A0

) = 22
/S I derds sin(An) sin 0 (22)
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—5 33 S tast =5 = 2

/S [’”273 rr; +V§’”§‘+r‘2‘r§+r§r§ 3 dé; de, sin Jx (23)

where 71 = [(x; — 51)2 + (x — 52)2 +x§]1/2, r=[(x; — 51)2 +(x2 + 52)2 +x§]1/2

expressed by

, the singular stress can be

ali(p) = ¢(§I;” {=2(1 — J) sin Osin(nA 4 20 — 20) — 2 cos(n + 0 — 10)
+[A(1 —22)(2 4 2) + B]cos(l — 2)0 — A(1 — 2)(1 — 22) cos(3 — 1)0} (24)

here ¢ = (2 —A4 — B+ 214 —2/).B). For a point p near the crack front point &, in the left material, using
(21) and following relations,
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the singular stress can be expressed by
P Ky, . T 3n
03 (p) = W [2(1 = A)(B—1)sinfcos(ni+ 30 — 20) — Acos(ni + 6 — 20)] 5 <0< > (27)
r

Other stresses near point &, can be obtained by use of above method. In the case of homogeneous materials,
solutions (24) and (27) are the same as that obtained by Tang and Qin (1993). The stress intensity factors
along the crack front meeting the interface can be rewritten as follows:
,U1/1W~l32172

K[j = lim

a0 (kg + 1)(sin Am) & (28)




2478 T.Y. Qin, N.A. Noda | International Journal of Solids and Structures 40 (2003) 2473-2486

4. Numerical procedure

Using its behavior near the crack front, the crack dislocation of a rectangular crack can be written as

B8, &) = F(&, &)/ (@ — 8)(2b— &) (29)
To solve the unknown function #;, the unknown function F(&,,&,) is approximately expressed
M N
élaéZ Z Zamn Wlﬂ 5 (30)
m=0 n=0

where a,,, is unknown constant. Substituting (29) and (30) into (10), a set of algebraic linear equations for
unknown a,,, can be obtained

M N
Z Zamnlmn X1, x2 (Kllu+ 1)p(x17x2) (31)
m=0 n=0 1
where
[m,,(xh.X'z) = Ir}m(xl XQ) +Imn(x17'x2) (32)
in which
) = f 5808 @ - 8)ab - ez (33)
Byniw) = [ Kalx, 98 (@ - )0 - &) dadg, (34)
s

The integral (34) is general ones, and can be numerically calculated. The integral (33) is hypersingular, and
must be treated before being numerically evaluated. Using the Taylor’s expansion and the polar coordinates
& —xy =rycosby, & —x, = rysin 6y as shown in Fig. 2, following relations can be obtained
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Fig. 2. Integral parameters.
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Using relations (35) and (36), the kernel of integral (34) can be written as follows:

<4 H"\/(az — E)(2b — &) = Do(x1,x2) + Dy (x1,%2, 01)r1 + Dy(x1,x2, 71, 01)r? (40)

where Dy(x1,x3), Di(x1,x2,0,), and D,(x,x,,71,6,) are known functions. Using the finite-part integral
method and relation (40), the hypersingular integral (33) can be reduced as

2n D (01)
I;m(xl,XQ):/O‘ [—%‘FD](X[JQ,QI)]HR(Q])+/0 Dz(xl,x27r1,01)dr1 d0 (41)

Now the integral in (33) is general, and can be calculated numerically. From (12), (28) and (29), the stress
intensity factor at the crack front point &, on the interface can be evaluated as follows:

Ky = (Kl + 1) sin(An)

2744 /2b(a® — X})F(x1,0) —a<x <a (42)

5. Numerical results

Consider a rectangular crack meeting the interface in three-dimensional infinite elastic solid under a
uniform tension load ¢%5 in infinity. In demonstrating the numerical results, the following dimensionless
stress intensity factor of the interface crack front Fj; and inner crack front £, will be used
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F, =K,/ o3 (43)

F =K /o53Vb (44)

5.1. Compliance of boundary condition and convergence of numerical solutions

Fig. 3 shows the compliance of the boundary condition along the crack surface for a/b =1, p,/p; = 2,
vi = v, = 0.3, where the collocation point number is 400 (20 x 20). In solving the algebraic equation (31),
the least square method is applied to minimize the residual stress at the collocation points. It is shown that
the remaining stress ((g33/0%3) + 1) on the crack surface is less than 4.5 x 10~* when M = N =9, less than
3.3 x 1073 when M = N = 11, and less than 1.4 x 107> when M = N = 13.

In the case of homogeneous materials, the numerical results of dimensionless stress intensity factor with
increasing the polynomial exponents are given in Tables 1 and 2 for different number of collocation points,
and compared with those given by Wang et al. (2001). It is shown that the results are convergent, and the
collocation point number 20 x 20 and the polynomial exponents M = N =9 are enough for a satisfied
result precision in this case. In general, too large polynomial exponents cannot give reliable results. The
polynomial exponents M, N depend on the collocation point number. For the polynomial exponents
M = N = 16, the results of the collocation point number 20 x 20 are not good, but the ones of the col-
location point number 30 x 30 are satisfied. The maximum stress intensity factor is F; ; = 0.7534, and is the
same as that obtained by Helsing et al. (2001) and Wang et al. (2001). In general case, Tables 3 and 4 give

P SN
KTSRAN
DRSS
QA EEDIZIOANT
RS LIERSEIINERS
‘.4"“'070 R

(c) X5 /b 21 X,/a

Fig. 3. Compliance of boundary condition g33/035 = —1 when a/b=1, i,/p; =2, vy =v,=03. @9 M =N=7,(b) M=N =9,
()M =N=11and (d) M =N = 13.
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Table 1
Convergence of dimensionless stress intensity factor F}, along x, = 0 with increasing the polynomial exponents M = N
xi/a
0/11 1/11 2/11 3/11 4/11 511 6/11 711 8/11 9/11 10/11
M=4 0.7557 0.7536 0.7473 0.7370 0.7229 0.7050 0.6824 0.6530 0.6117 0.5471 0.4295
M=6 0.7527 0.7512 0.7465 0.7381 0.7252 0.7069 0.6825 0.6511 0.6099 0.5504 0.4431
M=1 0.7527 0.7512 0.7465 0.7381 0.7252 0.7069 0.6825 0.6511 0.6099 0.5504 0.4431
M=38 0.7536 0.7518 0.7464 0.7374 0.7245 0.7067 0.6829 0.6512 0.6092 0.5504 0.4493
M=9 0.7536 0.7518 0.7464 0.7374 0.7244 0.7067 0.6829 0.6512 0.6092 0.5503 0.4493
M=10 0.7534 0.7517 0.7465 0.7376 0.7245 0.7065 0.6827 0.6511 0.6088 0.5499 0.4523
M=11 0.7534 0.7517 0.7466 0.7376 0.7245 0.7065 0.6827 0.6511 0.6087 0.5499 0.4520
M =12 0.7534 0.7518 0.7466 0.7376 0.7244 0.7065 0.6827 0.6510 0.6084 0.5493 0.4525
M=13 0.7534 0.7517 0.7465 0.7375 0.7245 0.7065 0.6826 0.6510 0.6086 0.5494 0.4543

M=16 0.7543 0.7530 0.7485 0.7392 0.7248 0.7056 0.6811 0.6488 0.6077 0.5530 0.5529
Wang 0.7534 0.7517 0.7465 0.7376 0.7245 0.7066 0.6828 0.6512 0.6086 0.5492 0.4536

a/b=1, /1, =1, vy = v, = 0.3, collocation points 20 x 20.

Table 2
Convergence of dimensionless stress intensity factor Fj; along x, = 0 with increasing the polynomial exponents M = N
xi/a
0/11 1/11 2/11 3/11 4/11 5/11 6/11 711 8/11 9/11 10/11
M=4 0.7566 0.7543 0.7476 0.7367 0.7221 0.7038 0.6813 0.6527 0.6128 0.5502 0.4342
M=6 0.7522 0.7508 0.7466 0.7385 0.7257 0.7072 0.6823 0.6502 0.6091 0.5512 0.4473
M=1 0.7522 0.7508 0.7466 0.7356 0.7258 0.7072 0.6823 0.6502 0.6091 0.5512 0.4473
M=38 0.7539 0.7519 0.7463 0.7371 0.7242 0.7068 0.6833 0.6513 0.6085 0.5498 0.4519
M=9 0.7539 0.7519 0.7463 0.7371 0.7242 0.7068 0.6833 0.6513 0.6085 0.5498 0.4519
M=10 0.7533 0.7517 0.7466 0.7377 0.7245 0.7064 0.6827 0.6514 0.6087 0.5491 0.4535
M=11 0.7533 0.7517 0.7466 0.7377 0.7245 0.7064 0.6827 0.6514 0.6087 0.5491 0.4535
M=12 0.7535 0.7517 0.7465 0.7376 0.7245 0.7066 0.6827 0.6512 0.6087 0.5488 0.4540
M=13 0.7535 0.7517 0.7465 0.7376 0.7245 0.7066 0.6828 0.6513 0.6087 0.5488 0.4540

M =16 0.7534 0.7517 0.7465 0.7376 0.7245 0.7066 0.6829 0.6514 0.6087 0.5485 0.4539

a/b=1, i/, =1, vy = v, = 0.3, collocation points 30 x 30.

Table 3
Convergence of Fy , and F; for a/b =1, p,/p; = 0.001, v; = v, = 0.3, collocation points 20 x 20 at x; =0
F; (x,=0) F| (x; = 2b)
M=N=6 0.001524 0.8076
M=N=17 0.001524 0.8075
M=N=238 0.001523 0.8085
M=N=9 0.001523 0.8086

the convergence of the dimensionless stress intensity factors with increasing the polynomial exponents for
W/, =0.001 and w,/u; = 10 at points (0,0) and (0, 2b).

5.2. Comparison with the two-dimensional case

If the crack is very long, e.g. a/b is very large, and tend to infinity, it is degenerated to a two-dimensional
crack problem. For the case of a/b = 8, the polynomial exponents M = N = 9, and the collocation point
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Table 4
Convergence of Fy; and F; for a/b =1, u,/p; = 10, v; = v, = 0.3, collocation points 20 x 20 at x; =0
Fi; (xa=0) Fi (x; = 2b)
M=N=6 2.352 0.7281
M=N=1 2.345 0.7302
M=N=28 2.343 0.7293
M=N=9 2.342 0.7307
Table 5
Dimensionless stress intensity factors £, ; for a/b = 8 and a/b = oo (Chen and Nisitani, 1993) at x;, =0, x, =0
B
-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
o=—0.95 a/b=28 7.79 3.83 2.45 1.78 1.36
a/b= o0 7.78 3.77 2.46 1.79 1.39
o= —0.65 a/b=18 6.60 3.40 2.263 1.66 1.29
a/b= o0 6.73 3.39 2.254 1.67 1.30
o =0.05 a/b=18 1.45 1.16 0.985 0.825 0.708
a/b= o0 1.47 1.17 0.967 0.818 0.701
o = 0.65 a/b=38 0.424 0.393 0.365 0.343 0.327
a/b= o0 0.434 0.400 0.373 0.351 0.331
o =0.95 a/b=38 0.074 0.073 0.072 0.073 0.075
a/b= o0 0.077 0.075 0.074 0.076 0.078

number is 20 x 20. The stress intensity factors at the center of the crack front on the interface are given in
Table 5, and compared with the result given by Chen and Nisitani (1993). In which, o= [k, +
1-T( 4+ D]/[ko+1+T(k1+ 1], f=[xa—1—=T(x; —1)]/[x2+ 14 T'(x;+1)]. It is shown that the
error is large for o« — 1 (I' — 0), the maximum error is about 3.9%.

5.3. Comparison for a rectangular crack in an infinite materials and a rectangular surface crack in a half space

Now the polynomial exponents are also taken as M = N =9, and the collocation point number is
20 x 20. For a rectangular crack in a homogeneous material, Table 6 gives the maximum stress intensity
factor for different ratios of a/b. It is shown that present results are closed to those given by Wang et al.
(2001) and Isida et al. (1991). If p,/u, — 0, it is the case of a surface crack in a half space. The dimen-
sionless stress intensity factors at the crack front point (x; = 0, x, = 2b) are given in Table 7. It is shown
that present results are close to the results obtained later (Isida et al., 1991; Noda and Wang, 2000).

Table 6
Dimensionless stress intensity factor £, ; for u,/u; =1, vy =v; =03 atx; =0,x, =0
a/b
1 2 4 5 8 10 0
Present 0.753 0.906 0.977 0.987 0.995 0.999 1.000
Wang 0.753 0.906 0.977 - 0.995 - -

Isida 0.756 0.907 0.977 - 0.995 - -
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Table 7
Dimensionless stress intensity factor / for u,/u; =0, vy =03 atx; =0, x, =2b
a/b
1 2 4 8 10 )
Present 0.810 1.113 1.387 1.531 1.552 1.586
Noda 0.810 1.112 1.386 1.529 1.550 1.586
Isida 0.803 1.069 1.318 1.481 - 1.586
Table 8
Dimensionless stress intensity factor Fj, for vy = v, =03 atx; =0, x, =0
a/
0.01 0.1 0.5 1.0 2.0 10.0 50.0 100.0
(2 =0.0852) (4 =0.2338) (4 =0.4255) (4=0.5000) (1=0.5661) (4=0.6672) (4=0.7013) (4=0.7061)
a/b=1 0.015 0.122 0.456 0.754 1.17 2.34 2.97 3.08
alb=2 0.023 0.171 0.572 0.904 1.36 2.58 3.24 3.34
a/b=38 0.032 0.215 0.651 0.997 1.46 2.69 3.34 3.44
a/b= o0 0.033 0.220 0.656 1.000 1.467 2.694 3.337 3.444

5.4. Solutions for general cases

For general cases, the polynomial exponents are taken as M = N = 9, and the collocation point number
is 20 x 20 for the following results. Table 8 and Fig. 4 give the maximum dimensionless stress intensity
factors at the center of the crack front on the interface varied with the ratio of u,/u, for different ratios of
a/b, Table 9 and Fig. 5 give the maximum dimensionless stress intensity factors at the center of the inner
crack front parallel to the interface. It can be shown that the stress intensity factors vary more gently when
/1y = 10. The dimensionless stress intensity factors along the crack front meeting the interface are shown
in Figs. 6 and 7 for different ratios of a/b and p,/u;, and compared with two-dimensional cases. It is shown

Stressintensity factor F1

© I;|||..

50
Wy /My

100

Fig. 4. Stress intensity factor F, ; at the center of the interface crack front (x, = 0).
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Table 9
Dimensionless stress intensity factor F; for vi =v, =03 at x; =0, x, =2b
/iy
0.0 0.1 0.5 1.0 2.0 10.0 50.0 100.0
a/b=1 0.810 0.789 0.765 0.753 0.741 0.731 0.727 0.726
a/b=2 1.11 1.02 0.938 0.906 0.877 0.844 0.835 0.833
a/b=238 1.53 1.24 1.06 0.995 0.947 0.889 0.874 0.872
a/b= o0 1.586 1.267 1.067 1.0000 0.9501 0.8911 0.8753 0.8731
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Fig. 5. Stress intensity factor F; at the inner crack front (x, = 2b).
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Fig. 6. Stress intensity factor F ; along the crack front on the interface for pu,/p, = 0.5.
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Fig. 7. Stress intensity factor Fj ; along the crack front on the interface or u,/u; = 2.

that the stress intensity factor at the center of the crack front for the case of a/b > 8 is closed to that of two-
dimensional case.

6. Conclusion

A rectangular crack meeting the interface in a three-dimensional dissimilar materials subjected to a
normal load is studied by a hypersingular integral equation based on the body force method.

(1) The stress singularity and singular stress field around the crack front terminating at the interface are
obtained by the main-part analytical method. Although expressions of the displacements and stresses
in the materials are complex in modality, the solutions of singular stresses around the crack front
are briefly. Due to the complexity of the stress singularities at the crack corners, it is not discussed here.

(2) The unknown function of the hypersingular integral equation is approximated by a product of a series
of power polynomials and a fundamental solution, which exactly expresses the singularities of stresses
near the crack front. The numerical results show that this numerical technique is successful, and the
solution precision is satisfied.

(3) From the numerical solutions, it is shown that the stress intensity factors vary more gently when
W/ 1y =10, and the stress intensity factor at the center of the crack front for the case of a/b > 8 is
closed to that of two-dimensional case.
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